
Introduction to writing IMP code
 

 Benjamin Webb,
Sali Lab,

University of California San Francisco
(ben@salilab.org)

mailto:ben@salilab.org

Overview

Here we will cover creating a new IMP module, and
writing a new restraint in C++

For more detail, see the IMP manual at 
https://integrativemodeling.org/nightly/doc/manual/
developing.html

Prerequisite: build IMP from source code as per 
https://integrativemodeling.org/nightly/doc/manual/
installation.html#installation_source

https://integrativemodeling.org/nightly/doc/manual/developing.html
https://integrativemodeling.org/nightly/doc/manual/developing.html
https://integrativemodeling.org/nightly/doc/manual/installation.html#installation_source
https://integrativemodeling.org/nightly/doc/manual/installation.html#installation_source

Add a new module
From the top-level directory in the IMP source code:

The ‘modules’ directory contains a subdirectory for each IMP
module.

To add a new module called ‘foo’, use the  
tools/make_module.py script:

$ tools/make_module.py foo

This will make a new subdirectory modules/foo/; let’s take a
look at its contents:

$ ls modules/foo
README.md bin examples pyext test
benchmark dependencies.py include src utility

‘include’ directory

This contains C++ header files that declare the public
classes and other functions that are part of the module
For classes that are not intended to be public (e.g. utility
classes only used by your module itself) put them instead
in the include/internal subdirectory
Let’s add a new class to our module, MyRestraint, a
simple restraint that restrains a particle to the xy plane
(see the ExampleRestraint class in  
modules/example/ for a similar class)

IMP convention is for class names (and the files declaring
and defining them) to be CamelCase

We do this by creating a file MyRestraint.h in the
modules/foo/include/ subdirectory

MyRestraint.h start
The first part of the file looks like

 
 
 
 
 
 
 
 

The ifndef/define is a header guard, which prevents
the file from being included multiple times. Convention is
to use upper case IMP<module name>_<file name>
All of our classes will exist in the IMP::foo namespace.
The IMPFOO_BEGIN_NAMESPACE macro ensures this. It
is defined in the foo_config.h header file
We are going to declare a restraint, so we need to
#include the Restraint.h base class definition

#ifndef IMPFOO_MY_RESTRAINT_H
#define IMPFOO_MY_RESTRAINT_H

#include <IMP/foo/foo_config.h>
#include <IMP/Restraint.h>

IMPFOO_BEGIN_NAMESPACE

Class declaration
 
 
 
 
 
 
 
 
 
 
 
 

IMPFOOEXPORT should be used for any class that has a .cpp
implementation, and ensures the class can be used outside of the
module (e.g. in Python)
IMP_OBJECT_METHODS adds standard methods that all IMP
Objects (like Restraint) are expected to provide
Our constructor takes an IMP Model, a particle in that model, and a
force constant
We will also need to provide the score and inputs for the restraint
(in the .cpp file)

class IMPFOOEXPORT MyRestraint : public Restraint {
 ParticleIndex p_;
 double k_;

public:
 MyRestraint(Model *m, ParticleIndex p, double k);
 void do_add_score_and_derivatives(ScoreAccumulator sa) const
 IMP_OVERRIDE;
 ModelObjectsTemp do_get_inputs() const;
 IMP_OBJECT_METHODS(MyRestraint);
};

MyRestraint.h end

The final part of the file looks like

This just closes the namespace and header
guard from the start of the file

Next, we need to provide a definition for the
class. We do this by making a corresponding file
MyRestraint.cpp in the  
modules/foo/src/ subdirectory

IMPFOO_END_NAMESPACE

#endif /* IMPFOO_MY_RESTRAINT_H */

MyRestraint.cpp start

The first part of the file looks like

Similarly to the header file, we need to put everything in
the IMP::foo namespace and include any needed
header files. Here we include the previous declaration of
the MyRestraint class. We also need the declaration
of the XYZ decorator from IMP::core since we are
going to be using the particle’s coordinates to calculate
the score.

#include <IMP/foo/MyRestraint.h>
#include <IMP/core/XYZ.h>

IMPFOO_BEGIN_NAMESPACE

Constructor

The constructor simply calls the Restraint base class
constructor (which takes the Model and a human-
readable name) and stores the p and k arguments in the
class attributes p_ and k_ (IMP convention is for class
attributes to end in an underscore)
“%1%” is a replaced with a unique number, so multiple
restraints will be named MyRestraint1, MyRestraint2, etc.

MyRestraint::MyRestraint(Model *m, ParticleIndex p,
 double k)
 : Restraint(m, "MyRestraint%1%"), p_(p), k_(k) {}

Score and derivatives

We apply a simple harmonic restraint to the z coordinate
to keep the particle in the xy plane
We use the core::XYZ decorator to treat the particle as
a coordinate
ScoreAccumulator is given the score, and analytic
first derivatives as well if requested

void MyRestraint::do_add_score_and_derivatives(ScoreAccumulator sa)
 const {
 core::XYZ d(get_model(), p_);
 double score = .5 * k_ * square(d.get_z());
 if (sa.get_derivative_accumulator()) {
 double deriv = k_ * d.get_z();
 d.add_to_derivative(2, deriv,
 *sa.get_derivative_accumulator());
 }
 sa.add_score(score);
}

Inputs

We also need to tell IMP which particles our
restraint acts on by overriding the
do_get_inputs method
Here we just have a single particle, p_
This is used to order the evaluation of restraints
and constraints (a constraint which moves particle
A must be evaluated before any restraint with A as
an input) and for parallelization

ModelObjectsTemp MyRestraint::do_get_inputs() const
{
 return ModelObjectsTemp(1,
 get_model()->get_particle(p_));
}

MyRestraint.cpp end

The final part of the file looks like

As before, we need to close the namespace

Next, we make the C++ class available in
Python. We do this by modifying the 
swig.i-in file in the modules/foo/pyext/
subdirectory

IMPFOO_END_NAMESPACE

SWIG class declaration

First, we need to tell SWIG how to wrap the
MyRestraint class: 

We tell SWIG that MyRestraint is an IMP Object
Most IMP classes are subclasses of IMP::Object.
These are heavyweight objects which are always
passed by reference-counted pointers, and are
generally not copied
Some simple classes (e.g.
IMP::algebra::Vector3D) are subclasses of
IMP::Value. These are lightweight objects which
are generally passed by value or reference, and can
be trivially copied

IMP_SWIG_OBJECT(IMP::foo, MyRestraint, MyRestraints);

SWIG header file

We also need to tell SWIG to parse our C++
header file:

With the SWIG interface complete, we will be
able to use our class from Python as
IMP.foo.MyRestraint.

%include "IMP/foo/MyRestraint.h"

Documentation

Documentation is omitted here for clarity, but all
C++ headers and .cpp files should contain
comments!
All comments are parsed by doxygen, which
uses the special comment markers //! and  
/** */
You should also fill in 
modules/foo/README.md with a description
of the module and the license it is released
under. We recommend an open source license
such as the LGPL.

Tests

Next we should write a test case in the
modules/foo/test/ directory, by creating a
new file test_restraint.py
Test cases periodically verify that IMP is working
correctly
Test cases can be written in C++, but are almost
always written in Python for flexibility
IMP convention is to name a test file starting
with test_

test_restraint.py start
The first part of the file looks like

We need to import the IMP kernel, any other IMP modules
used in the test, and our own IMP.foo module
The imports from __future__ help to ensure that our
test works in the same way in both Python 2 and Python 3
All tests should be classes that use the IMP.test
module, which adds some IMP-specific functionality to the
standard Python unittest module

from __future__ import print_function, division
import IMP
import IMP.test
import IMP.algebra
import IMP.core
import IMP.foo

class Tests(IMP.test.TestCase):

test_restraint.py method

We create a restraint object, request its score and
derivatives (evaluate), and ask for inputs (get_inputs)
Here we simply test by comparing to known good values
using the standard unittest methods
assertAlmostEqual, assertLess, and assertEqual

Always use assertAlmostEqual for floating point
comparisons, never assertEqual

 def test_my_restraint(self):
 m = IMP.Model()
 p = m.add_particle("p")
 d = IMP.core.XYZ.setup_particle(m, p, IMP.algebra.Vector3D(1,2,3))
 r = IMP.foo.MyRestraint(m, p, 10.)
 self.assertAlmostEqual(r.evaluate(True), 45.0, delta=1e-4)
 self.assertLess(IMP.algebra.get_distance(d.get_derivatives(),
 IMP.algebra.Vector3D(0,0,30)),
 1e-4)
 self.assertEqual(len(r.get_inputs()), 1)

test_restraint.py end

This simply runs all the tests in this file if the script is run
directly from the command line with 
“python test_restraint.py”

if __name__ == '__main__':
 IMP.test.main()

test_restraint.py complete

Python is sensitive to whitespace, so ensure the file is
indented as shown here.

from __future__ import print_function, division
import IMP
import IMP.test
import IMP.algebra
import IMP.core
import IMP.foo

class Tests(IMP.test.TestCase):

 def test_restraint(self):
 m = IMP.Model()
 p = m.add_particle("p")
 d = IMP.core.XYZ.setup_particle(m, p, IMP.algebra.Vector3D(1,2,3))
 r = IMP.foo.MyRestraint(m, p, 10.)
 self.assertAlmostEqual(r.evaluate(True), 45.0, delta=1e-4)
 self.assertLess(IMP.algebra.get_distance(d.get_derivatives(),
 IMP.algebra.Vector3D(0,0,30)),
 1e-4)
 self.assertEqual(len(r.get_inputs()), 1)

if __name__ == '__main__':
 IMP.test.main()

Dependencies

Finally we need to tell the IMP build system which other
modules and external code the module depends on. This
is done by editing the file 
modules/foo/dependencies.py:

Since we use the core and algebra modules, we need
to declare them as requirements for this module.
*_dependencies can be used to make use of 3rd party
libraries. See some existing IMP modules for examples.

required_modules = ‘core:algebra'
required_dependencies = ''
optional_dependencies = ‘'

Source control

Now is a good time to store the module in source control
Most IMP modules are stored on GitHub
See https://github.com/salilab/pmi/ and  
https://github.com/salilab/npctransport for examples

https://github.com/salilab/pmi/
https://github.com/salilab/npctransport

Build and test it

Build IMP from source code in the usual way. cmake will
pick up the new module, then make/ninja will build it
Test the new code with something like 

$./setup_environment.sh python \
 ../imp/modules/foo/test/test_restraint.py

